


Chapter 1 - Introduction
Welcome to ML!



Chapter 2 - Introduction to Probabilistic Modeling
Probability is the extension of logic from the discrete to the continuous

Probability Theory and Random Variables
An experiment has an outcome (in the outcome space). An event is a meaningful set of outcomes.
Probabilities about events are expressed as random variables X, which has its own outcome space
X .

Defining Distributions

Discrete Distributions and PMFs

A probability mass function (PMF) is a function p : X → [0, 1] where ∑
x∈X

p(x) = 1; it describes the

probability of a particular outcome x ∈ X  occurring

The Bernoulli distribution describes an experiment; it as a single parameter α that defines the
probability of the experiment succeeding.

The (discrete) uniform distribution describes the distribution where every outcome is equally likely to
occur.

The poisson distribution describes the probability of a certain number of incidents occurring (over
an implicitly finite timespan). Its parameter λ is the expected number of incidents in the timeframe.

E.g. a die roll is an experiment, rolling a 1 is an outcome, rolling an even number is an event. We
may define X as the outcome of a die roll, then compute things like P(X > 3) that correspond to
events.

We must have ∑
x∈X

p(x) = 1 because the probability of an outcome being measured from an

experiment is by definition 1

P(X ∈ A) =∑
x∈A

p(x) where A ⊆ X  is an event

Compactly, we write its PDF as p(x) = αx(1 − α)1−x

For X  where #X = n, its PDF is p(x) =
1

n

Its PDF is p(x) =
λxe−λ

x!



Continuous Distributions and PDFs

The continuous analog to the PMF is the probability density function (PDF), defined as a function

p : X → [0, ∞) where ∫
X

p(x) dx = 1

The continuous uniform distribution is the continuous analog to the discrete uniform distribution; it

has PDF p(x) =
1

b − a
 where a and b define the bounds of the uniform range.

The exponential distribution is the continuous analog to the poisson distribution and is defined over
X = (0, ∞) as p(x) = λe−λx with parameter λ.

The Gaussian distribution or normal distribution defines many natural phenomena, as well as the
emergent distribution of sample averages of not necessarily Gaussian populations (central limit
theorem, roughly).

The Laplace distribution is similar to the Gaussian, but more peaked around the mean. It is defined

as p(x) =
1

2b
e− 1

b |x−μ| with parameters μ ∈ R and b > 0.

The Gamma distribution is the continuous analog to the poisson distribution and is defined over

X = (0, ∞) as p(x) =
βα

Γ(α)
xα−1e−βx (where Γ(x) is the gamma function)

Multivariate Random Variables

Joint Distributions

We define the joint probability mass function p : X × Y → [0, 1] and corresponding joint
probability distribution P  such that p(x, y) := P(X = x,Y = y) for random variables X and Y  with
outcome spaces X  and Y, respectively.

Note: although the distribution seems to act like a rate, the actual length of time being measured
cancels out, so there is no parameter to define the "time" events are measured over

It is used similarly to a PMF, but evaluating it at any point is meaningless because the probability
of a particular outcome happening over an experiment defined by a continuous distribution is 0. It
measures the "density", something more fuzzy.

P(X ∈ A) = ∫
A

p(x) dx

We have p(x) =
1

√2πσ2
e− 1

2σ2 (x−μ)2

, but this is not often integrated on directly

Parameters: mean μ, variance σ2 (derived from standard deviation σ).

This is regarded as the most important distribution due to the central limit theorem



d-dimensional Random Variables

We generalize joint distributions to d dimension: we consider a d-dimensional random variable
→X = (X1,X2, … ,Xd) with vector-valued outcomes →x = (x1,x2, … ,xd) where each xi is chosen from
some corresponding outcome space Xi.

Marginal Distributions

A marginal distribution of a subset of →X ≅{X1,X2, … ,Xd} ⊃ A is found by summing/integrating
over the remaining variables {X1,X2, … ,Xd} ∖ A.

Conditional Probability

We define the conditional probability p(y|x) of X given Y  as p(y|x) :=
p(x, y)

p(x)
 where p(x) > 0

Product Rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x)

Bayes' Rule: p(x|y) =
p(y|x)p(x)

p(y)
 (follows directly from the product rule)

The PMF must satisfy ∑
x∈X

∑
y∈Y

p(x, y) = 1

Z = (X,Y ) is a multivariate random variable with outcome space Z = X × Y

Then, any p : X1 × X2 × ⋯ × Xd → [0, 1] is a multidimensional probability mass function if
∑
x1∈X2

∑
x2∈X2

… ∑
xd∈Xd

p(x1,x2, … ,xd) = 1, or in the continuous case, a multidimensional

probability density function if ∫
X1

∫
X2

…∫
Xd

p(x1,x2, … ,xd) dx1dx2 … dxd = 1

E.g. the marginal distribution of X for the d = 3 distribution (X,Y ,Z) is p(x) :=∑
y∈Y

∑
z∈Z

p(x, y, z);

we are summing over the variables X,Y

Of course, we integrate in the continuous case
Notice how this is still a function: since we are summing/integrating over the variables not in our
subset, their degrees of freedom remain, and we get another function

This is interpreted as the probability that Y = y given that we know X = x. Hence, "conditional".

This generalizes to the chain rule: p(x1, … ,xd) = p(x1)
d

∏
i=2

p(xi|[x1, … ,xi−1])

E.g. p(x, y, z) = p(x|[y, z]) × p(y|z) × p(z)



Variables X and Y  are independent if p(x1,x2, … ,xd) = p(x1)p(x2) … p(xd), i.e. if the conditional
and marginal distributions are the same. Thus, the variables don't "affect" each other.

Expectations and Moments

Expected Value

The expected value E[X] of random variable X is the average of n → ∞ samples of X. Numerically,

for discrete X, E[X] :=∑
x∈X

xp(x) and for continuous X, E[X] := ∫

X

xp(x) dx

We can extend expectation to the other types of distributions we've seen (we only write the body of
the expression expectation expression for brevity)

Law of total expectation: E[Y ] = E[E[Y |X]] (the outer expectation is over X, the inner over Y ).

Variance

We define the variance Var[X] of random variable X as Var[X] := E[(X − E[X])2]. This measures
how "concentrated" the distribution of X is around its mean

Aside: Covariance satisfies the metric axioms, so it is a metric function (distance function) over the
space of distributions.

Conditional Independence: p([x, y]|z) = p(x|z) × p(y|z)

This is very often used in machine learning

Conditional independence and "regular" independence do not imply each other!

We can find the expected value of functions on X (moments); we have for discrete f(X)

E[f(X)] =∑
x∈X

f(x)p(x) and for continuous f(X) E[f(X)] = ∫

X

f(x)p(x) dx. We are essentially

creating a new random variable named f(X), then computing the expected value of that.

Conditional expectation: E[f(Y )|X = x] ≈: f(y)p(y|x) collected over y

Joint expectation, one variable fixed: E[f(X,Y )] :≈ f(x, y)p(x|y)

Joint expectation, no variables fixed: E[f(X,Y )] :≈ p(y)E[f(X, y)], i.e. we simply fix the last
variable and look at the expectation again

Intuitively, the dependence in the inner expectation gets "averaged out" by the outer expression

This interpretation follows from the definition directly; we are measuring the expected euclidean
distance of a given instance of X from its expected value.

Variance is always ≥ 0



Covariance

Just as variance measures the "spread" of a single variable, covariance Cov[X,Y ] of X and Y
measures how spread out two variables are, as well as how spread out their "union" is. We have
Cov[X,Y ] := E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ]

We define the correlation Corr[X,Y ] of X and Y  as a normalized version of variance that measures

how related the two variables are. We have Corr[X,Y ] :
Cov[X,Y ]

√Var[X]√Var[Y ]
∈ [−1, 1]

Properties of Variance and Covariance

Extra: (more) Formal Probability Theory
In probability theory, an experiment has an outcome ω; all the possible outcomes form the outcome
space/sample space Ω. An event is a set of outcomes that denote a "type of thing"; these form the
event space E ⊆ P(Ω) of the experiment.

X and Y  are independent if their covariance is 0.

We have Cov[X,X] = Var[X]

Here, we are normalizing using the variance of X and Y

Properties of Variance and Covariance

For random variables X,Y  and c ∈ R, the following hold

Furthermore, if X and Y  are independent:

1. E[cX] = cE[X]

2. E[X + Y ] = E[X] + E[Y ] (linearity of expectation)

3. Cov[X,X] = Var[X] ≥ 0

4. Var[c] = 0

5. Var[cX] = c2Var[X]

6. Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ]

1. E[XY ] = E[X]E[Y ] for any data points

2. Var[X + Y ] = Var[X] + Var[Y ]

3. Cov[X,Y ] = 0

E.g. rolling a die is an experiment with outcome space {1, 2, 3, 4, 5, 6}, so rolling a 1 is a possible
outcome, whereas rolling an even number is an event corresponding to outcomes {2, 4, 6}



The concept of a random variable is a formalization and generalization of the notion of an experiment
on which we can define probabilistic questions.

Axioms of Probability (Appendix)

(Ω, E) is a measurable space if the outcome space/sample space Ω is non-empty and the event
space E ⊆ P(Ω) has the following properties

A probability measure/probability distribution P : E → [0, 1] must satisfy the axioms of probability:

(Ω, E,P) is a probability space/probability measure if all the above properties are true.

A random variable is a function X : Ω → X  that defines a transformation between experiment's
probability space and its own probability space; it defines the probability space (X , EX,PX)

Using random variables lets us define probabilities in terms of boolean statements instead of set
notation; PX(X = x) is equivalent to P({ω : X(ω) = x}), for example

The space (X , EX,PX) as defined above is a valid probability space, so the same axioms and rules
apply.

Asides

We define a mixture as a sort of "compound distribution", whose PDF is defined as a normalized

linear combination (convex combination) of other PDFs, i.e. p(x) =
n

∑
i=1

wipi(x) where the weights

w1 + ⋯ + wn are all positive and sum to 1.

1. A ∈ E ⟹ A ∈ E
–

2. A1,A2, ⋯ ∈ E ⟹

∞

⋃
i=1

Ai ∈ E

3. E is non-empty

1. P(Ω) = 1

2. A1,A2, ⋯ ∈ E and Ai ∩ Aj = ∅ for all i, j ⟹  P (
∞

⋃
i=1

Ai) =
∞

∑
i=1

P(Ai)

E.g. for a dice roll, X may represent whether the value is even or odd; this random variable maps
({1, 2, 3, 4, 5, 6}, P(Ω),P) to ({even, odd}, P({even, odd}),PX). Here, X(w) ↦ odd iff w ∈ {1, 3, 5}

and X(w) ↦ even iff w ∈ {2, 4, 6}

Once we've defined a random variable, we can forget about the rest of the probability space



Mixtures can accurately describe multimodal distributions.



Chapter 3 - Estimation
Estimators
An Estimator X̂ of random variables X1 … Xn is a distribution that we construct in order to estimate
(model) some random variables, that we (presumably) know some, but not all information about

Bias of estimator X̂ is E[X̂ − X], i.e. the expected (signed) difference ("vertical offset") from the true
distribution

To find the expected value, variance, etc. of an estimator, plug it into the formula for that property, then
evaluate

Sample Mean

The sample mean X̄ =
1

n

n

∑
i=1

Xi can be used as an estimator for the random variables X1 … Xn

Confidence
Confidence interval: P(|X̂ − μ| ≤ ε) > 1 − δ indicates that E[X̂] is in the interval [X̂ − ε, X̂ + ε] with a
probability of 1 − δ

Since the variance (usually) is a function of n, more samples → tighter confidence intervals

Confidence Inequalities

Quantities we want to estimate (μ, σ2, etc.) can be derived from the estimator's distribution

Estimator based on data → follows the distribution of that data

Plugging in X̄ into the appropriate formulae yields E[X̄] = E [ 1
n

n

∑
i=1

Xi] = μ and Var(X) =
1

n
σ2,

indicating the variance gets smaller the more samples are used to construct the sample mean

So, 95% confidence interval → δ = 0.05

May require using a z-table to actually compute; P(|X̂ − μ| ≤ ε) is determined numerically by
integrating over the continuous PDF with bounds μ − ε, μ + ε; the z-table caches these
calculations on the normalized distribution

Aside: this is called the law of large numbers



Confidence inequalities relate the values of δ, ε, and n, which bounds confidence intervals

Hoeffding's inequality P(|X̂ − E[X̂]| ≥ ε) ≤ 2 exp −
2nε2

(b − a)2
 for distributions with bounds a, b

Chebyshev's inequality P(|X̂ − E[X̂]| ≥ ε) ≤
σ2

nε2
 unbounded distributions

Since the left part of both inequalities is a confidence interval, equate the right to δ; this can be used to
determine an actual interval (i.e. define ε) in terms of δ, n, and σ

Consistency
An estimator X̂ is consistent if as n → ∞ (i.e. more and more variables are considered), X̂ → X,
where X is the true distribution we are trying to model

The convergence rate of an estimator X̂ is "how fast" the estimator approaches the true value,
expressed in big-O notation

Complexity
The complexity of an estimator X̂ is the number of samples required to guarantee an error of at most
ε with probability 1 − δ

Error
The mean-squared error is a way to calculate the expected error of an estimator X̄

Chebyshev's inequality can be used to show this, since ε → 0 ∼ X̂ → μ

Aside: formally, X̂ → X means that all the parameters of X̂ approach those of X (parametric)

This can be derived with Chebyshev; X̄ converges at a rate of O(
1

√n
), for example

These are the same ε and δ; we find this by deriving Chebyshev in terms of n

We have MSE(X̂) = E[(X̂ − E[X])2] = Var[X̂] + Bias(X̂)2

Implies that biasing an estimator towards the true mean may reduce the error even if it increases
the variance; there is a tradeoff between these two properties



Chapter 4 - Optimization
The goal of optimization is (often) to find some parameter →w in the possible set of parameters W to
minimize some objective function c : W → R that calculates the "cost" or "error" of an estimation.

A common objective function is the objective error: c( →w) =
n

∑
i=1

((xi) →w − yi)
2

Stationary Points
For continuous W, the arg min must lie at a stationary point, i.e. a point where c′(w0) = 0

We use the second derivative test to figure out the type of point

Gradient Descent
Generally, datasets are much too large to calculate stationary points symbolically, so they must be
approximated numerically

The Taylor series c(→a) +
∞

∑
n=1

c(n)(→a)

n!
(w − →a)n of c(w) is an approximation for c(w) around its radius of

convergence (i.e. local area)

Second-order

This is often written min
→w∈W

c( →w)

Aside: is min an operator? something different? It needs a function and set (domain) to
generate the set, and returns a member of it

Parameters →w are vectors since there may be any number of them
W may be discrete or continuous; we will consider continuous W in this course

c′′(w0) > 0: w0 is a local maximum
c′′(w0) < 0: w0 is a local minimum (often what we are looking for)
c′′(w0) < 0: w0 is either a local minimum, local maximum, or saddle point; further analysis
required

Replace ∞ with k to get the kth order Taylor series



Second-order Gradient descent: Zero points can be "estimated" using a Taylor series by picking a
nearby point w0, manipulating the Taylor series equation to be in terms of c′(w), then equating it to 0;
the new w value →w1 will be the next estimate

First-order

Without the second derivative, we must pick a constant stepsize η to move by each time

Vector Gradient Descent

Adaptive Step Size

If the step size is too small, it takes a long time to find a stationary point; if the step size is too large,
the search "may bounce" around the point without converging

Our ideal step size is min
η∈R+

c( →wt − η∇c( →wt))

Equation: →wt+1 ← →wt −
c′(wt)

c′′(wt)

Equation: wt+1 ← wt − ηtc
′(wt)

Multivariate equation: →wt+1 ← →wt − ηt∇c( →wt)

Aside: the second-order formula suggests that 
1

c′′(wt)
 is a good choice for η (example of an

adaptive step size)

We can adapt gradient descent for vectors: →wt+1 = →wt − ηt∇c( →wt), where ∇c( →wt) is the
multivariate generalization of the derivative

Specifically, ∇c( →wt) = (
∂c

∂w1
( →wt),

∂c

∂w2
( →wt), … ,

∂c

∂wd

( →wt)) ∈ Rd

Aside: here, we are taking ηt to be a scalar that scales the vector c( →wt). However, for
multivariate gradient descent, we can also use a vector →ηt, which (through the dot product)
scales each component of c( →wt) differently
Aside: I guess scaling can be thought of as a special case of the dot product, where one of
the vectors is all the same c. Interesting!

This formula is derived directly from finding the step size η that creates the lowest cost (in terms
of c( →wt))
Once again, it is to expensive to solve this optimization analytically, so we should approach it
numerically



Backtracking Line Search

We try the largest "reasonable" step size ηmax. If it reduces the cost, we use that; otherwise, we
decrease ηmax and try again until the cost is reduced

Generally, we reduce η using the rule η → τη, for some τ ∈ [0.5, 0.9]

Heuristic Alternative Example

Heuristic search: A search that uses previous information to help solve the current problem

We define →gt = ∇c( →wt) and choose nt = (1 +
d

∑
j=1

|gt,j|)
−1

Testing for Optimality and Uniqueness
If a function is convex (i.e. secondary derivative is always non-negative), then all stationary point(s)
will be global minima. As such, gradient descent is optimal (assuming it converges to the minimum)

We may constrain the bounds in which we want to search for our optimization. As such, the function's
boundary points may (or may not) need to be considered (evaluated) to see if they are global
minima

Identifiability: the ability to identify the true, possibly unique solution

Equivalence under constant shift: Adding or multiplying by a constant a ≠ 0 doesn't change the
solution, i.e. arg min

→w∈Rd
c( →w) = arg min

→w∈Rd
ac( →w) = arg min

→w∈Rd
c( →w) + a

Intuition: a large step is good, as long as it doesn't overshoot
Naming: we search along the line η ∈ (0, ηmax] to find the step size

This uses the magnitude of the gradient in the denominator, plus 1 to make sure the denominator
doesn't get so large (since if the gradient is very small, the step size would be large)

We can replace 1 with parameter ε

Having more than one solution may indicate a problem wasn't precisely specified
Sometimes, Identifiability doesn't matter, i.e. finding a reasonably accurate predictive function is
sufficient

Justification: the gradient is 0 under all three conditions, so the optimization process should be
the same



Chapter 5 - Parameter Estimation
In probabilistic modelling, our task is to approximate (model) the true distribution of a set of
observations (dataset). Since distributions are defined uniquely by their parameters, our goal is to
identify and estimate them given the dataset.

The hypothesis space or function class F  is the set of is the set of all possible distributions we
consider for an unlabelled dataset D = {xi}

n
i=1. The true distribution ⋆f of D is in F

An estimation strategy is an algorithm that picks an f ∈ F  to approximate ⋆f

Maximum Likelihood Estimation (MLE)
Maximum Likelihood Estimation (MLE) is the process of picking f ∈ F  that makes seeing the
dataset D with distribution f the most likely; we choose f to maximize that likelihood p(D|f), so
fMLE = arg max

f∈F
p(D|f)

Recall that, assuming independent samples from D, we have p(D|f) =
n

∏
i=1

p(xi|f), for xi ∈ D

When F  is finite (i.e. there is a discrete list) of possible parameters to consider, we can just calculate
each p(D|f) and pick the largest f. Otherwise, for infinite (implying continuous) F , we need to use
continuous optimization techniques like gradient descent to find the maximal f

Log-likelihood

E.g. F = {N (μ,σ2) : μ,σ ∈ R} is the set of all univariate gaussian distributions; ⋆f = N (⋆μ, ⋆σ2)

where ⋆μ and ⋆σ are the true mean and STD of the distribution
We often just consider the parameter space (e.g. F = {(μ ∈ R,σ ∈ R+}) directly instead of the
actual distributions they parametrize; each parameter of the distribution is a free variable

Aside: we can formalize D as a set of ordered pairs (i,x), where i is the index of the datum and
x is the value of the datum itself; this allows us repeated x, which D as a set of data itself does
not. However, we can also treat it like an (unordered) multiset

By "picking f", we mean picking the parameter(s) that define f.

The definition of p(D|f) depends on the distribution f defines.

Aside: we use the product law here since we have "datum 1" and "datum 2" and…



Computing gradient descent to optimize f for continuous F  is painful; calculating the log-likelihood
fMLE = arg min

f∈F
− ln p(D|f) yields the same fMLE (since ln is monotone) while transforming products

into sums, making gradient descent easier to compute.

MLE for Conditional Distributions

Conditional distributions provide additional auxiliary information that will inform the estimate of the true
distribution. In machine learning, most parameter estimation happens for conditional distributions; we
often make predictions given many features (auxiliary variables).

Given two random variables X and Y  and D = {(xi, yi)}n
i=1, we want to estimate parameters →w for

p(y|x). We use the chain rule for probability p(xi, yi) = p(yi|xi)p(xi) since because p(y|x) uses both y
and x, we need to consider both xi and yi, i.e. p(xi, yi)). We find:

ln p(D| →w) = ln
n

∏
i=1

p(xi, yi| →w) = ln
n

∏
i=1

p(yi|[xi, →w])p(xi) =
n

∑
i=1

ln p(yi|[xi, →w]) +
n

∑
i=1

ln p(xi)

Using the PDF p for whatever distribution we want to estimate, we can compute the gradient with
respect to →w by computing each partial derivative, then either evaluate directly or perform gradient
descent.

We can also formulate this as the MAP problem arg min
→w∈Rk

−
n

∑
i=1

ln p(yi|[xi, →w])

When Y  is a discrete distribution, we can simplify the summation into cases, i.e. for each possible
value of yi, there is a different distribution of the same type for xj that appear with yi that we wish to
estimate. So, for each partition of x{1…} by y{1…}, we have a different set of parameters, all contained
in →w. Each corresponding set of parameters is estimated separately.

Maximum a Posteriori (MAP) Estimation
Maximum a Posteriori Estimation (MAP) is the process of picking the most probable f ∈ F  given
dataset D; we choose f to maximize p(f|D), so fMAP = arg max

f∈F
p(f|D)

Derivation: − ln p(D|f) = − ln
n

∏
i=1

p(xi|f) = −
n

∑
i=1

ln p(xi|w)

By convention, we take the arg-min of the negative log, which is equivalent

We can think of this as filtering for a particular value for yi, then learning the parameters in →w for
all the values xj corresponding to that yi.

E.g. if there are 2 values for y1 and y2, if we try to estimate a gaussian, we will have
→w = {μ1,σ2

1,μ2,σ2
2}



We calculate the posterior distribution p(f|D) using Bayes' rule: p(f|D) =
p(D|f)p(f)

p(D)
. p(D) doesn't

depend on f, so we derive fMAP = arg max
f∈F

p(D|f)p(f)

Log-likelihood can be used for MAP as well

Note: priors are, like a whole thing. We can't really calculate them because they are defined in terms
of other values we are trying to compute. Instead, we choose priors that we think match our situation,
or have useful properties (more on that later). Priors are a degree of freedom.

Bayesian Estimation
MLE and MAP are point estimates because they provide a single vector →w as an estimation; they don't
give insight into how changes in the parameter space are reflected in the accuracy of the estimation.
In addition, defining distributions only by their parameters means that non-standard (e.g. skewed,
multimodal) distributions cannot be represented or estimated.

Bayesian approaches aim to derive the entire posterior distribution p(f|D) instead of "summarizing" it;
as such, they provide more information than just a single value for f.

We calculate the posterior p(f|D) by updating the prior p(f) with the data D; often, p(f) and p(f|D)

follow the same type of distribution (known as a conjugate prior), where P(f|D) will have lower
variance because it is equipped with the information in D.

Considering the entire posterior lets us reason about the range of plausible parameters, i.e. the level
of confidence around the estimated parameters. Using σ, we can reason about whether our estimate
is near optimal.

So, by definition, we are choosing the mode.

So, MAP is like MLE, but "weighted" by the prior p(f).

We think of D as the realization of a multidimensional random variable D with distribution p(D);
we can then apply the law of total probability to find p(D) =∑

f∈F

p(D|f)p(f) for discrete F  and

p(D) = ∫

F

p(D|f)p(f) df for the continuous F

Note: the mean may shift between p(f) and p(f|D), since the new data may indicate a different
mean

Let p(w|D) be defined by a gaussian with parameters σ2 and μ. We find the confidence interval
for δ as p(w ∈ [μ − ε,μ + ε]) = 1 − δ ⟹ ε = Z[1 − δ]σ. If we only consider p(f), we'd only find
w = μ, with no additional information

In addition, knowing p(w|D) lets us pick different point estimates; MAP uses the mode (i.e. most
likely point), but we could use the mean or the median instead



Computing the Posterior with Conjugate Priors

Using Bayes' rule, we find p(w|D) =
p(D|w)p(w)

p(D)
. p(D|w) and p(w) are known, and we can estimate

the constant p(D) with p(D) = ∫ p(D|w)p(w) dw

A prior p(w) is a conjugate prior to a likelihood p(D|w) if the resulting posterior p(w|D) and prior have
the same type of distribution.

Gradient Descent for Parameter Estimation
We can also find point estimates numerically instead of analytically, using gradient descent, with rule
→wt+1 = →wt − ηt∇c( →wt) , where the cost function c( →w) follows from dropping constants from the

expansion of − ln p(xi, →w), or − ln p(yi|[xi, →w]) for conditional distributions

We use an integral here because w (the parameter we are building an estimate for) can have a
continuous range of values; this integral may be evaluated analytically or numerically
Note: for MAP, we didn't need to calculate the value of P(D) because, as a constant, it didn't
affect the arg min. However, because we are now finding a distribution, it needs to be calculated

Generally, this leads to nice algebraic cancellation later: if both distributions are the same, terms
are more easily grouped together.

Often, the integrals required for confidence/credible intervals can be solved analytically
conjugate priors are used.

However, from a numerical perspective, they are not necessary.



Chapter 6 - Stochastic Gradient Descent
Although gradient descent is a very adaptable approach to finding stationary points, it has a high
computation cost because it requires iterating over the entire dataset. Stochastic approximation
involves picking a random subsample of the dataset from which to calculate the gradient. This
strategy works empirically due to the scale of datasets used in real applications of machine learning
applications.

Since the gradient of a single sample ∇ck( →w) is an unbiased (though high-variance) estimator for the

true gradient ∇c( →w) =
1

n

n

∑
i=0

∇ci( →w), the sample average of b random gradient samples 1

b
∑
k∈B

∇ck( →w)

will be a lower-variance unbiased estimator for the true gradient. As b → ∞, the variance gets smaller;
thus, with high enough b, we can use this sample average instead.

SGD Algorithm

Note that instead of shuffling the dataset each time we descend, we shuffle it once, then keep using
the next b elements to construct the estimate. This is more efficient than randomizing every time, while
guaranteeing that every datapoint gets looked the same amount (±1) of times. This whole process is
called an epoch, and may be repeated an arbitrary number of times.

Aside: since the estimator 
1

b
∑
k∈B

∇ck( →w) is unbiased, the direction we travel each step will be

correct on average.

Aside: note that "regular" gradient descent is a special (defective) case of stochastic gradient
descent, i.e. when b = n.

# gradient descent for b = 1
D, w, cost(n, w)
# data: vector D of length n
# starting estimate: vector w with random values
# cost(k, w) calculuates cost of w with relation to datapoint k
for i in ecpochs

shuffle(D)       # randomly shuffle the order D
for j in n       # for 1...n

g = gradient(cost(n, w))     # multivariable version of c_n'(w)
η = i^{-1}   # step size is inverse of epoch number (apative step 

size)
w = w - ηg   # gradient descent update rule

end
end
# w contains the estimate for c(w) = 0



Generally, setting b = 1 is too high variance; we usually pick a b > 1 and add another inner loop to
calculate the estimate of the sample average of the b datapoints. Note that a higher b likely leads to a
better estimate for the true gradient (and thus more accurate gradient descent), but requires more
computation to find. Thus, a balanced b should be chosen with care.

Stepsize Selection
In the algorithm above, we used the epoch number p to calculate stepsize as η = p−1, since it gets
smaller as we perform more iterations of gradient descent while assuring each datapoint has the
same relative weight.

In the AdaGrad algorithm, stepsize is calculated as →η =
1

√1 + →gt

= (1 + →gt)
− 1

2 , with

→gt = →gt−1 +
1

d

d

∑
j=1

( →gt,j)
2, where →gt is the mini-batch gradient on iteration t. So, the the size of the last

gradient, the smaller the current stepsize is, but we still have →η → →1 when the gradient is near →0,
implying convergence around the true value of →w. Note that AdaGrad uses a vector stepsize that
scales the stepsize independently in each dimension.

Time Complexity
If it takes O(d) to compute ∇ci( →w) for one i ∈ N, then each mini-batch update in SGD takes O(bd),
which seems better then the regular O(nd) for "regular" gradient descent, since we usually have n ≫ b

. However, since regular gradient descent has more accurate update steps, it will almost certainly take
more steps (denoted k) to reach a stationary point.

If stochastic gradient descent performs better, we have kSGDbd ≤ kGDnd, implying kSGD ≤ kGD
n

b
.

Empirically, we have found that this is almost always the case in real applications of GD, since using it
practically requires very large n.

Aside: This code can get messy because b ∣ n is not guaranteed; a special case in the loop is
required for b ∤ n (as we saw on Assignment 2). However, as n → ∞ this difference becomes
negligible.

–

–

––

Aside: since SGD with b = 1 is just GD, we have a secondary optimization problem of finding the
most efficient b ∈ {1, … ,n}, since we know both the cases b = 1 and b = n are too noisy and too
slow, respectively



Chapter 7 - Intro to Prediction Problems
Machine learning problems come in many forms; a useful ontology (set of properties to categorize) for
machine learning problems has the following dimensions

Forms include (from notes): supervised, semisupervised, and unsupervised learning, completion
under missing features, structured prediction, learning to rank, statistical relational learning, active
learning, and time series prediction.

Supervised Learning
Supervised learning uses a dataset D of observations x ∈ X  paired with targets y ∈ Y. Usually,
observations are vectors in some space (e.g. Rd), where an arbitrary member of this space is an
instance/sample. An entry in an sample is a feature/attribute; these are given when defining the
problem and define the data in aggregate.

Aside: prediction algorithms are generally designed for inputs of real-valued vectors, but most data
doesn't trivially fit into this format. So, we must consider how to encode different types of data as a
vector in some euclidean space, where algorithms can be applied. Such a mapping is called an
embedding. In this course, we will assume data is already embedded.

Classification vs. Regression

In both classification and regression problems, we seek to predict targets based on features.
Regression problems have a continuous target space Y (e.g. Y ⊆ R), whereas classification
problems have discrete target space containing various classes/categories (e.g.
Y = {healthy, diseased}).

Passive vs. Active data collection
Independent vs. Dependent datapoints (i.e. i.i.d vs. non-i.i.d.)

Complete vs. Incomplete data

Generally, the features are easy to measure but the target is not. Thus, we wish to predict the
target from the features; thus, supervised learning is associated with prediction problems.
In unsupervised learning, the algorithms learns (synthesizes) features that best encode the
dataset; the features are not given. We still need to specify the distribution whose parameters we
wish to estimate.

Aside: more precisely, regression problems consider the order of Y, whereas classification
problems do not. Thus, with regression, the prediction for datapoint x should be close to that of



Classification problems can be further divided into multi-class problems, where each datapoint can
have one label ℓ ∈ L, i.e. Y = L, and multi-label problems, where a datapoint can have multiple
labels, i.e. Y = P(L).

Optimal Classification and Regression Models
To create an optimal classification or regression model, we must define a cost function
cost : Y × Y → R+ that measures the cost of a predictor function f : X → Y. cost(ŷ, y) is the cost for
predicting ŷ (from f) when the true answer is y. We seek to minimize the expected cost.

Cost Functions

The "simplest" cost function is the 0-1 cost function, where cost(ŷ, y) = 0 when y = ŷ and 1
otherwise.

For discrete Y (→ classification problems), we can define a different cost for any combination of
values of ŷ and y, i.e. Y × Y. Lets us specify when some kinds of inaccurate predictions are more
problematic than others (e.g. false negatives are usually worse than false positives in a medical
setting).

For regression problems, we must use continuous functions of ŷ and/or y so that the cost is defined
for any combination of the two. Some common cost functions are:

Deriving Optimal Predictors

For classification problems, We can express E[C] = E[cost(f(X), Y)] as ∫
X

∑
y∈Y

cost(f(→x), y)p(→x, y) dx

= ∫
X

p(→x)∑
y∈Y

cost(f(→x), y)p(y|→x) dx

x + ε for some small ε. This idea isn't well defined for classification problems.

L denotes the label space; this can be formalized as a set of indicator vectors.

We use an indicator vector to encode which class datapoint or instance belongs to

Note that the cost C = cost(f(X), Y) is a function of random variables, so is itself a random
variable as well. So, the expected cost used above is E[C].

Squared error: cost(ŷ, y) = (ŷ − y)2

Absolute error: cost(ŷ, y) = |ŷ − y|.

Note that C and thus E[C] is defined in function of two variables, so we integrate/sum over both



So, the optimal predictor ⋆f(→x) = arg min
ŷ∈Y

E[C|X = →x], so ⋆f(→x) = arg min
ŷ∈Y

∑
y∈Y

cost(ŷ, y)p(y|→x). Thus, the

value of this predictor depends on the cost function. For 0-1 cost, this evaluates to arg max
y∈Y

p(y|→x).

For regression problems, Y is continuous, so we integrate over it instead, i.e.

= ∫
X

p(→x)∫
Y

cost(f(→x), y)p(y|→x) dx. For the squared error, ⋆f(→x) = E[Y |→x]

Reducible and Irreducible Error

There are two types of error in our prediction: reducible error comes from how close the trained
model f(→x) is to E[f(Y|X)]; this can theoretically be reduced to 0 by finding ⋆f, or (in practice) a
suitably close estimator. The irreducible error comes from the variability inherent to Y, and as such
cannot be reduced by improving the estimator.



Chapter 8 - Linear and Polynomial Regression
Given a dataset D, we want to find a functional form f that describes the relationship between the
features and the target. Like for distributions, the function f will have parameters →w.

For linear f, we have f(→x) = w0 + w1x1 + w2x2 + …, where the parameters are →w = (w0,w1, …). We

can express this as the dot product f(→x) =
d

∑
j=0

wjxj = →x⊤
→w, where we define x0 = 1 for ease of

notation.

Maximum Likelihood Formulation
We formulate a linear regression as a random variable Y  whose (linear) relationship with X, the
random variable representing a possible input vector →x we would like to learn. Y  is defined as
d

∑
j=0

wjxj + ε, where →w = (w1, …wj, …) are the true parameters (which we aim to learn) and ε is an

noise error term following a zero-mean Gaussian distribution N (0,σ2) independent* of X.

So, as an MLE problem, for F ⊆ R
d+1, we have →wMLE = arg min

→w∈F⊂Rd+1
−

n

∑
i=1

ln p(yi ∣ →xi, →w). Since we

know this is Gaussian, we can expand using the Gaussian PDF to find ⋯ = arg min
→w∈F

n

∑
i=1

(yi − →xi
⊤
→w)2.

So, our predictor is ŷi = →xi
⊤
→w.

Finding a Linear Regression Solution

We wish to learn →w.
f may also be non-linear (e.g. f(→x) = α + βx1x2 with parameters α, β), but we will only consider
the estimation of linear functions here. The only limit is your imagination!

Finding the best parameters →w ∈ R
d+1 is the linear regression problem.

The conditional density p(y|→x, →w) is gaussian, in particular N (f = →w⊤
→x,σ2), since it is defined by ε

Aside: we should differentiate error (and later, variance) coming from noise in the data from
variance coming from the features themselves (feature variance). Error from noise can be
compensated for as n gets larger.

This suggests we should seek to minimize the squared difference between our prediction and the
actual target, something we knew already

Note: →xi is the ith datapoint, which is a vector because it has a number of features/attributes



We can minimize the squared error using cost function c( →w) =
1
n

n

∑
i=1

1
2

(f(→x) = →xi
⊤
→w − yi)

2. We find

that ∇c( →w) =
1
n

n

∑
i=1

( →xi
⊤
→w − yi)xij, where j is an attribute in datapoint →x.

This gives us a system of d equations where, for each j ∈ [d + 1], ∇c( →w) = 0. Written as a vector, this

is ∇c( →w) =
1
n

n

∑
i=1

( →xi
⊤
→w − yi) →xi = →0. We can use linear algebra to find a solution to this system, but

(as with most things), approximating it with (stochastic) gradient descent is usually more practical.

Polynomial Regression
Most real-life problems don't have linear solutions; we can extend linear regression to produce non-
linear predictions by applying a non-linear transformation ϕ to the data, performing the linear
regression, then reversing the transformation.

Univariate Case

To estimate a univariate polynomial function of degree p, we define polynomial

f(x) =
p

∑
j=0

wjϕj(x) = →ϕ⊤
→w with parameters →w. Here, →ϕ = (ϕ0(x),ϕ1(x), … ,ϕp(x)) where ϕj(x) = xj is

a set of basis functions that transforms the polynomial regression problem into a linear one. We then
solve the linear regression like our inputs are ϕ0(x),ϕ1(x), … ,ϕp(x)

Aside: since we have normalized the function with 1
n

, it represents the average squared error,
not the total squared error. This doesn't change the arg min or the gradient direction, but does
ensure that the error won't grow with more data.

Aside: similarly, the 1
2  doesn't change anything but makes the algebra convenient later

This non-linear function creates a new feature space where a linear function in the feature
space gets transformed into a non-linear function in the original observation space.
Many such non-linear transformation functions can be used, but we will consider polynomials

We are performing a flatmap here;
Note: here, there's just one input x (instead of multiple, i.e. →x); the basis functions are all applied
to that one input to get p terms x1, …xp. For →x, this would happen for each element

Aside: the fact that we use the input multiple times (transformed by multiple functions) makes
sense: a polynomial regression encodes more information (and is always more accurate) than a
linear one.



This can also be thought of transforming the original dataset D = {(xi, yi)} into Dϕ = {(ϕ(xi), yi)},

where ϕ(xi) = , performing a normal linear regression on that whose parameters become the

coefficients of the polynomial regression.

Multivariate Case

For multivariate inputs →x, each transformation ϕj : X → R produces one term ϕj(→x) of the polynomial.

E.g. for →x = [ ], our polynomial basis →ϕ would be {1, a, b, ab, a2, b2} depending on the degree, and we

are optimizing the function f ([ ]) = w0 + w1a + w2b + w3ab + w4a
2 + w5b

2 =
6

∑
j=0

wjϕj([ ])

⎡⎢⎣ϕ0(x)

⋮
ϕp(x)

⎤⎥⎦a

b

a

b

a

b

Note: For a polynomial with multiple variables, our basis isn't just going to be xp for varying p; it
will contain every combination of xayb where a + b ≤ p. For a degree p polynomial with d inputs,

there are (
d + p

p
) parameters.

Aside: In theory, we could choose to omit certain terms from the basis if we knew they would hurt
our estimation (more on this in chapter 10), but generally, the more possible terms, the better the
estimator



Chapter 9 - Generalization Errors and Evaluation of
Models
A model's training error is the total cost of a model across all the training data.

A model's generalization error is the expected cost of a model across all the possible datapoints, i.e.
the whole data space. It measures how well a model is likely to perform on data it has never seen
before.

Generalization error can be caused by overfitting, where the function has been overly adapted to the
training data specifically; it matches the noise of the data instead of the trend. In the n → ∞ case, an
overfitted function returns yi if input xi is in the dataset and 0 otherwise.

Underfitting can occur when the model is not complex enough to represent the data. However, this
can be more easily detected, since both generalization and training error will remain high.

Test Sets
A test set is a subset of the dataset D left out of training and used to test the model's performance; in
particular to test for overfitting. Since the model hasn't seen the testing data before, it can't have
overfit to it.

As a model becomes more complex (e.g. the power of a polynomial regression gets higher), this
can only go down, assuming the more complex parameter space is a superset of the old
parameter space.
However, the training error only measures against training data; does it generalize to the data on
which we actually want to use the model?

Because the model has only been trained on its training data (by definition), it can only minimize
cost over that training data. So, we can't train to minimize generalization error directly. What we
can minimize is the empirical error.

This is useless, because the whole reason we want to build a model is to predict data we haven't
seen.

Overfitting happens when a model is too complex for its dataset.
A sign of overfitting is extremely large coefficients, since these can be used to target specific
data points.

Aside: not being able to use all the data is a disadvantage of testing this way. Cross-validation
can be used to split training data in such a way that we can get reasonable performance
estimates for models trained on all the data.



Overfitting has likely occurred if the testing error is significantly higher than the training error, i.e. the
generalization error is high.

A good choice for a model is one that minimizes the training error, since this seems to generalize the
best. Relative to this point, models with lower complexity likely underfit and and models with higher
complexity likely overfit.

Underfitting has likely occurred if the next increase in complexity (e.g. additional power in polynomial
regression) decreases both the training and testing error. As such, the "optimal" model is the one with
the smallest testing error.

Making Statistical Claims about Error

Confidence Intervals

If we take the sample average of m error samples of function f 's estimation of dataset D, our sample

average error is E =
1

m

m

∑
i=1

ci(f), where ci(f) is the error of sample i calculated by c (e.g. squared

error, etc.). The sample average error follows a student's T distribution

Note: for a well-trained model, training error will likely be higher than testing error because, by
definition, the model has seen the training data but not the testing data.

–

The student's T distribution allows sample variance to be used instead of the true variance

So, ε = T [δ, m − 1]
Sm

√m
 where S 2

m =
1

1 − m

m

∑
i=1

(ci(f) − E)2 and the constant T [δ, m − 1]

depends on the number of samples

–



Confidence intervals effectively measuring the performance of one model, but also multiple. If for
given ε1 and ε2, we have E1 + ε1 < E2 − ε2 (i.e. the intervals don't overlap significantly*), we know
that f1 is statistically significantly better than f2 with confidence level δ.

Parametric Tests

If we want to simply rank models f1 and f2 without precise error bars, we can perform a parametric
test by testing a model on a dataset and calculating the probability that the result would happen
randomly; this probability is called the p-value. Most consider that a p value of α = 0.05 or smaller
implies statistical significance.

Binomial Test

We can perform the binomial test between two models f1 and f2 by

Other Tests

Although the structure of the testing is constant, different distributions can be used for different tests
when necessary.

Aside: this T  table lookup is analogous for the Z table value of a gaussian distribution, but
changes as a function of the number of samples m instead of remaining constant like Z[δ]

for a given δ. As m → ∞, T [δ, m] → Z[δ], so the student's T distribution approaches the
corresponding gaussian distribution

––

We are really considering whether it is more likely that the null hypothesis H0 (generally that
the result happened randomly) is true, or whether the alternative hypothesis H1 is true, where H1

is the "positive hypothesis" (e.g. that a model predicts data). If p < 0.05, we can reject the null
hypothesis and accept H1.

For each point in the test set, record which model performs better. If the set has m points, f1 will
"win" 0 ≤ k ≤ m times and and f2 will "win" m − k times.
H0 is the hypothesis that f1 and f2 have the same quality (i.e. that the result was due to random
variance), and H1 is the hypothesis that f1 is better than f2 (assume WLOG that f1 performed
better)

We define p = P(f1 gets at least k wins) =
m

∑
i=k

(
m

i
)β

i(1 − β)m−i from the PF of the binomial

distribution, where β is the probability that f1 "wins" based on test set (likely around 1
2 )

If p < 0.05 (or more generally if p < α for chosen α), then we can reject H0 and state with
statistical backing that f1 performs better



Choosing a parametric test is like choosing a learning model: strong assumptions can lead to faster
learning/stronger results, but are more prone to bias/poor prediction, whereas weaker models make
better predictions but need more data

Types of Errors

Type I error: A test is used under incorrect assumptions → the null hypothesis is rejected when it
shouldn't have been (false positive)

Type II error: A test fails to reject the null hypothesis even though the data is statistically significant
(false negative)

The test we choose depends on the distribution that our performance measure follows, i.e. the
distribution arising from our tests
Each type of test makes assumptions about what kind of values we will find

E.g. if we considered the error of each f1 and f2 guess instead of just whether which one was
the best, we would have two values in R per trial; a paired t-test would be appropriate for this
case.

Often, we have less data available for statistical tests, making this decision even harder than
choosing a model

Can arise when the parametric test chosen is too weak (i.e. can be made stronger)



Chapter 10 - Regularization and Constraint of the
Hypothesis Space

Note: Although motivating the actual regularization formulae, I didn't find the course notes
explained this concept in a clear way, particularly when first introducing it. I would recommend
reading this article on the subject first to provide some background before reading the course
notes.

Regularization refers to a set of techniques used to reduce overfitting by trading training accuracy for
generalizability. This is done by adding an additional term to the cost function that penalizes large
coefficients in →w, since this often indicates overfitting.

Deriving Regularization as MAP
If we define linear regressions as a MAP problem (instead of an MLE problem, like we have been), we
must choose a prior p( →w), since we are considering p( →w|D). This prior is picked to regularize
overfitting. Two common choices are the Gaussian Prior (ℓ2 norm) and the Laplace Prior (ℓ1 norm).

In the following priors, λ is a hyperparameter (i.e. a parameter of the learning process itself). It ends
up acting as the regularization parameter; the higher the λ, the higher the penalty for having large
coefficients.

Gaussian Prior (ℓ2 Norm, Ridge regularization)

Assume each component wj of →w has Gaussian prior N (0,
σ2

λ
) with the following assumptions

We choose 
σ2

λ
 for the prior's variance in order to create a regularization parameter (namely λ).

Since each prior p(wj) is gaussian, the prior p( →w) is defined as p( →w) = p(w1) × p(w2) × ⋯ × p(wd).
Taking the log likelihood and expanding the gaussian probability function yields

− ln p( →w) = −
d

∑
j=1

ln p(wj) = ⋯ =
d

2
ln

2πσ2

λ
+

It turns out that the implementation of regularization "pops out" of the equation when we consider
linear regression as a MAP problem; it follows directly from this perspective!

We assume that there is no covariance (and/or correlation) between weights
λ > 0 such that p(y|→x) = N (→x⊤

→w,σ2).

λ

2σ2

d

∑
j=1

w2
j

https://www.simplilearn.com/tutorials/machine-learning-tutorial/regularization-in-machine-learning


The first term is constant, so it doesn't affect the selection of →w.

Since we are using MAP, we consider the prior and the likelihood, so we want to find the arg min of
their sum, so we get

arg min
→w∈Rd+1

−[ln(p(→y|[ →X, →w])) + ln(p( →w))] = ⋯ = arg min
→w∈Rd+1

1

2

n

∑
i=1

( →xi
⊤
→w − yi)

2 +
λ

2

d

∑
j=1

w
2
j

Since →xi
⊤
→w is our prediction ŷi, we simply have our regular MAP cost function plus the regularization

term, here 
λ

2

d

∑
j=1

w2
j .

The gradient of our regularized cost function is ∇ci( →w) =

We can simply the problem (and the PDF) by assuming the mean of each wj is 0, assuming here we
subtracted the intercept term w0 from it. So, we don't need to consider the w0 term either.

Laplace Prior (ℓ1 Norm, Lasso regularization)

We define and motivate the Laplace prior in the same way as the Gaussian prior, but assume each
component wj of →w follows a Laplace distribution instead.

Performing the same derivation, we find the regularization term to be 
λ

2

d

∑
j=1

||wj||, the difference being

that we no longer square wj. So, the Laplace prior is more likely to return terms where some wj are 0.

Expectation and Variance for MLE vs. MAP
In the (univariate) case where we have one parameter w (with "true" value ω) over dataset D = (X,Y )

, we have found in Chapter 5 - Parameter Estimation that the MLE estimation wMLE(D) =
∑n

i=1 XiYi

∑n
i=1 X

2
i

Since we have two terms in the cost function, the estimation now "balances" the objectives they
both represent, respectively fitting the weights and not overfitting.

Note: the regularization terms doesn't include w0 since, as the intercept term, it only shifts the
function

⎡⎢⎣ ( →xi
⊤
→w − yi)

( →xi
⊤
→w − yi)xi1 + λw1

( →xi
⊤
→w − yi)xi2 + λw2

…

⎤⎥⎦Note: this objective is hard to optimize (e.g. with gradient descent) because the Laplace PDF is
not differentiable at 0 (!). We will not optimize it in this course.



is an unbiased estimator of ω; we can find variance using the formula (in the course notes on page
107).

However, the MAP estimate wMAP(D) =
∑n

i=1 XiYi

λ + Sn
 is not an unbiased estimate of ω; we find that

E[wMAP(D)] = ωE [
Sn

λ + S − n
]. So, it is unbiased when λ = 0 and as λ → 0 (i.e. when the

regularization penalty is 0, as expected), but becomes more biased as λ → ∞

Bias-Variance Tradeoff Revisited
We find that we can reduce the mean-squared error by incurring some bias; this is optimal as long as
the variance is decreased more than the squared bias increases.

Bias-Variance Quadrants

Choosing the Right Model

We can derive the variance for wMLE as Var[wMLE] = σ2
E [

1

n
C−1

n ] where Cn :=
1

n

n

∑
i=1

X
2
i

So, for very small amounts of data, C−1
n  can be very large, and thus wMLE can vary widely

wMLE being very different on small subsets of the same dataset is not desirable!

Once again, we can derive the variance. We find Var[wMAP] = σ2
E [

1

n
C−1

n,λCnC
−1
n,λ] where

Cn,λ =
1

n
(λ + Sn)

Notice than when Cn (essentially sample estimate for variance of Xi) is small, Var[wMAP] doesn't

get large like Var[wMLE] since C−1
n,λ <

1

λ
. So, as λ → ∞, Var[wMAP] gets arbitrarily small.

Remember, we are assuming the underlying function is indeed linear, and thus that all the bias is
introduced by regularization. In reality, bias can also come from choosing a function class that
can't truly estimate the underlying function (e.g. trying to predict a cubic function with a linear
regression).

1. Low bias, low variance: F  is large enough (i.e. has enough "detail") to represent ⋆f properly.
The more complex ⋆f is, the more samples are required

2. Low bias, high variance: F  is complex enough to represent ⋆f, but we don't have enough
samples (n is too small)

3. High bias, low variance: F  is not complex enough to represent ⋆f
4. High bias, high variance: Bad Bad Bad. Likely not enough data and the model F  is not

complex enough to represent ⋆f.



Bias-variance Tradeoff (again)

Generally, we find above that the smaller our dataset is, we should err on the side of simpler models
so that we don't end up in the useless high-bias, high-variance category.

We can use a small validation set as data to train a bunch of different models, then evaluate which
model would perform the best with the full testing set.

Inductive Bias

We can use inductive biases to improve models: these are biases that we are aware of (from our
prior knowledge) that we can use to prune the function space.

However, this starts to nudge ML models from things that should be able to learn from any context
(i.e. from any dataset) to things more tailored to situations useful to us.

This is used to appropriately constrain which models we consider

The validation set is often split off of the training set

In theory, a good enough model with enough data could learn the same things we know already.
However, it can be helpful to manually nudge the model in the right direction with prior
knowledge

We are manually biasing the model

E.g. in an image dataset, we know that the red channel contains no useful data. In theory, the
model could learn this by itself with the right data, but we can simply write the model to ignore
the red data immediately to increase accuracy.

Manually biasing a model might reflect the biases we hold; shouldn't machine learning be a tool
to get an unbiased preception of data?

E.g. large language models should be general enough to "understand" any language. However, it
is most "useful" (profitable) to optimize the models to learn english. We can introduce biases to
help this (i.e. hard-coding some grammar rules), but this makes the model worse at
understanding other languages.



Chapter 11 - Logistic Regression and Linear
Classifiers

Logistic regression lets us apply the machinery of regression to classification problems by
interpreting the parameterization of the estimated logistic regression as a classification

We learned that classification requires estimating p(y|→x). For binary classification, i.e. Y = {0, 1},
p(y|→x) must follow a Bernoulli distribution, which has one parameter α; α(→x) = p(y = 1|→x). We can use
logistic regression to parametrize and learn this α(→x).

Parametrization for Binary Classification
Essentially, we perform linear regression, but constrain the range of the function to [0, 1], since this is
the space over which binary classification is (somewhat) defined. We constrain using the sigmoid
function σ : R → (0, 1), w ↦ (1 + exp w)−1; we aim to learn weights →w such that p(y = 1|→x) = σ(→x⊤

→w)

Since this prediction is in (0, 1), not {0, 1}, we must convert (0, 1) → {0, 1}. Generally, if f(→x) > 0.5, it is
classified as 1, otherwise 0. So, the function we are using is round.

The distribution of the actual probabilities is still useful; if most of f 's values are above 0.9 or below 0.1

, the model is more confident than if most values hover around 0.5, even if the "cutoff point" is the
same.

MLE For Logistic Regression
Like in any MLE estimation, we choose f to maximize p(D|f) for dataset D, so our objective (also

called cross-entropy) c( →w) is c( →w) =
1

n

n

∑
i=1

− ln p(yi| →xi). We find that the gradient (for a single entry in

→w) is ∇c(wi) = (pi − yi)xij, where pi = σ((→x⊤
→w)i)

We find p(y|→x) = σ(→x⊤
→w)y(1 − σ(→x⊤

→w))y−1

So, our prediction function is in the form f(→x) = σ(→x⊤
→w) for weights →w.

This uses the same approach as polynomial regression

Any "rounding point" value can be used, 0.5 is the most common. This is related to "unbalanced
cost functions"; sometimes a false negative is worse than a false positive.

Aside: how can this be formally defined in terms of a cost function?

f actually gives a confidence value for →x being classified as 1; the conversion step to {0, 1} is
only needed to act on that information.



We can also incorporate a Gaussian or Laplace prior to derive a regularized version: for a Gaussian

prior (ℓ2 regularization), we find the gradient descent rule →wt+1 = →wt − ηt(σ( →xi
⊤
→wt) − yi) →xi − ηt

λ

n
→wt

Logistic Regression for Linear Classification
Because →x⊤

→w = 0 represents a hyperplane that splits Rn into two regions, it is a linear classifier (even
though →w was learned with the non-linear σ).

Aside: this is what classifiers do: partition space Rn into equivalence classes. If a classifier is linear,
this boundary is shaped like a hyperplane, but it can (and often should) be shaped differently.

Issues with Minimizing MLE

Why didn't we directly try to minimize c( →w) =
1

n

n

∑
i=1

(σ( →xi
⊤
→w) − yi)

2 (or the equivalent with a different

cost function) instead of this Bernoulli skedaddling? Because this is non-convex optimization.

∇c( →w) = 0 doesn't have a closed form solution, so we must use an iterative optimization method
like gradient descent.
The stochastic gradient descent rule for b = 1 is (trivially) →wt+1 = →wt − ηt(σ( →xi

⊤
→wt) − yi) →xi

The intercept term w0 of this plane prevents the result from being biased by preventing it from
being skewed towards the origin. If the term were not present, the hyperplane would have to
pass through the origin.

By definition, any →x satisfying this is orthogonal to →w

Specifically, for the squared error (euclidean error), there are exponentially many local minima



Chapter 12 - Bayesian Linear Regression
In the previous chapters, we used point estimates MLE and MAP to characterize linear regression. In
this chapter, we use Bayesian estimation to do the same, namely Bayesian estimation of the
conditional distribution p(y|→x).

The following derivations consider the univariate case with one weight w for simplicity.

Posterior Distribution p(w|D) for Known Noise Variance
Once again, we make the assumption that p(y|x) ∼ N (μ = xw,σ2) and that each component (weight)

wi has a gaussian prior p(wi) ∼ N (0,
σ2

λ
) (we take the prior p(w) to be conjugate to the posterior

p(D|w), i.e. Gaussian in this case). From Bayes rule,

p(w|D) =
p(D|w)p(w)

p(D)
=

p(w)∏n
i=1 p(yi|xi,w)

∫ p(w)∏n
i=1 p(yi|xi,w) dw

.

We can derive that p(w|D) ∼ N (μn,σ2
n) where σ2

n =
σ2

∑n
i=1 x

2
i + λ

 and μn =
∑n

i=1 xiyi + λμ0

∑n
i=1 x

2
i + λ

.

Since this is a Bayesian estimation, we can establish a credible interval with σ2
n, since this term gets

smaller as n → ∞. Namely, for a δ credible interval, we compute p(w ∈ [a, b]|D) = δ

Posterior Distribution p(w|D) for Unknown Noise Variance
Generally, we don't know the variance σ2 when taking a linear regression since we don't understand
the data's noise before analyzing the data itself.

Like before, using Bayesian estimation gives us credible ranges around our predictions, this time
weights for the linear model.

Note: we use the same prior as in ℓ2 regularization

The MAP solution corresponds to the mode μn of this distribution

Since we chose a Gaussian prior p(w), we can simply pick a = μn − Z[δ]σn, b = μn + Z[δ]σn

using the Gaussian z-table

This is different than (although very similar to) a confidence interval because the prior is used to
calculate the interval in addition to the data (D) itself

In this case, the conjugate prior follows the Normal-Inverse-Gamma distribution, which has
parameters μn,λn, an, bn



If the parameters of our prior's distribution are μ0 ∈ R and λ0, a0, b0 > 0, we find that the posterior (and

variance) p([w,σ2]|D) = NIG(μn,λn, an, bn), where λ =
n

∑
i=1

x2
i + λ0, μn =

∑n
i=1 xiyi + λ0μ0

λn
,

an = a0 + 1
2 n, bn = b0 +

1

2
(

n

∑
i=1

y2
i + λ0μ

2
0 − λnμ

2
n)

Under NIG, the variance on the choice for the weight w is given by bn

(an − 1)λn

The Posterior Predictive Distribution
Why go to the trouble of using Bayesian Linear Regression?

It is more useful to reason about the variability across our predictions using w, rather than the
variability of w itself under a particular distribution. Specifically, we want to know P(xw|[x,D])

The Posterior predictive distribution p(y|x,D) = ∫
w

p(w|D)p(y|[x,w]) dw is method of model

averaging that weights each model (value of w) proportionally to how effective it is.

The mode of a NIG distribution is E[(w,σ2)] = (μn, bn
an−1 ). So, bn

an − 1
 is the most likely value for

the variance σ2 of the noise

The course notes contain a derivation of a variance equation for a simpler set of parameters to
the NIG distribution

If this term is large, the credible interval around our choice of weight is also large
The marginal distribution of w for NIG is a Student's t distribution, so we can calculate confidence
intervals for confidence δ with [μn − ε,μn + ε] where ε =

an

bnλn
T [1 − δ, 2an]

This is still a student's T distribution (since the x isn't really changing anything here), so an
interval of confidence δ is given by [xμn − ε,xμn + ε] where ε =

an

bnλn

T [1 − δ, 2an].

If error is known, the distribution is Gaussian with mean xμn and variance x2σ2
n

Since we are using Bayesian linear regression, we know the closed form of all the distributions in
the equation, so we can evaluate the integral analytically!
For known variance, we find p(y|[x,D]) ∼ N (xμn,x2σ2

n + σ2)

Things are more complicated when noise is unknown, but it still follows a student's T distribution


